Software for ensemble-based data assimilation systems - Implementation strategies and scalability

نویسندگان

  • Lars Nerger
  • Wolfgang Hiller
چکیده

Data assimilation algorithms combine a numerical model with observations in a quantitative way. For an optimal combination either variational minimization algorithms or ensemble-based estimation methods are applied. The computations of a data assimilation application are usually far more costly than a pure model integration. To cope with the large computational costs, a good scalability of the assimilation program is required. The ensemble-based methods have been shown to exhibit a particularly good scalability due to the natural parallelism inherent in the integration of an ensemble of model states. However, also the scalability of the estimation method – commonly based on the Kalman filter – is important. This study discusses implementation strategies for ensemble-based filter algorithms. Particularly efficient is a strong coupling between the model and the assimilation algorithm into a single executable program. The coupling can be performed with minimal changes to the numerical model itself and leads to a model with data assimilation extension. The scalability of the data assimilation system ∗Corresponding author. Email address: [email protected] (Lars Nerger) Manuscript accepted for publication in Computers & Geosciences March 30, 2012 is examined using the example of an implementation of an ocean circulation model with the Parallel Data Assimilation Framework (PDAF) into which synthetic sea surface height data are assimilated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance evaluation of a throughput-aware framework for ensemble data assimilation: the case of NICAM-LETKF

In this paper, we propose the design and implementation of an ensemble data assimilation (DA) framework for weather prediction at a high resolution and with a large ensemble size. We consider the deployment of this framework on the data throughput of file input/output (I/O) and multi-node communication. As an instance of the application of the proposed framework, a local ensemble transform Kalm...

متن کامل

Four-dimensional ensemble variational (4D-En-Var) data assimilation for the HIgh Resolution Limited Area Model (HIRLAM)

A four-dimensional ensemble variational (4D-EnVar) data assimilation has been developed for a limited area model. The integration of tangent linear and adjoint models, as applied in standard 4D-Var, is replaced with the use of an ensemble of non-linear model states to estimate fourdimensional background error covariances over the assimilation time window. The computational costs for 4D-En-Var a...

متن کامل

Enhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)

The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...

متن کامل

Grid Rainfall Disaggregation toward a Patch-based Ensemble Kalman Filter for Soil Moisture Data Assimilation

Data assimilation is the process by which observation data is used in model simulations and predictions. The Ensemble Kalman Filter (EnKF) is one such assimilation implementation, and efforts are underway to develop an EnKF to assimilate soil moisture data for use in the Land Data Assimilation Schemes (LDAS), developed in part at the Hydrological Sciences Branch at NASA’s Goddard Space Flight C...

متن کامل

P3.4 the Local Ensemble Kalman Filter of the University of Maryland

The time has come when ensemble-based Kalman filter data assimilation schemes can be considered for implementation on operational weather forecast systems in the foreseeable future. For the first time, an ensemble Kalman filter has been reported to break even with a sophisticated operational 3DVar system (Houtekamer et al 2004), to outperform the NCEP 3D-Var in reconstructing the state of the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & Geosciences

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2013